<|ll

7/08S

MYVS Programming: Extended
Addressability Guide

222222222222

<|ll

7/08S

MYVS Programming: Extended
Addressability Guide

222222222222

Note
Before using this information and the product it supports, be sure to read the general information under

Third Edition, March 2002
This is a major revision of SA22-7614-01.

This edition applies to Version 1 Release 3 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com

World Wide Web: hitp:/Avww ibm .com/servers/eserver/zseries/zas/webqs html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this book

» Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures .
Tables

About This Book

Who Should Use This Book

How This Book Is Organized.

How to Use This Book .

Where to Find More Informat|on .
Accessing licensed books on the Web . .
Using LookAt to look up message explanations .

Summary of changes

Chapter 1. An Introduction to Extended Addressability

Basic Concepts .o
Asynchronous Cross Memory Communlcatlon .

Synchronous Cross Memory Communication
Access Register ASC Mode .
Data-in-Virtual .

Virtual Lookaside FaC|I|1y

Data Spaces and Hiperspaces . .

Basic Decision: Data Space or Hiperspace .
What Can a Program Do With a Data Space or a Hlperspace’> .
What are the Differences? .

Which One Should Your Program Use’?
Choosing VIO Instead of a Data Space or a Hlperspace

Chapter 2. Linkage Stack .
Linkage Stack Considerations for Asynchronous EX|t Routlnes .
Instructions that Add and Remove a Linkage Stack Entry .
Branch and Stack (BAKR) Instruction
Program Return (PR) Instruction .
Example of Using the Linkage Stack
Contents of the Linkage Stack Entry.
Instructions that Manipulate the Contents of a Lmkage Stack Entry
Extract Stacked Registers (EREG) Instruction .
Extract Stacked State (ESTA) Instruction .
Modify Stacked State (MSTA) Instruction .
Expanding a Linkage Stack to a Specified Size. .
Relationship Between the Linkage Stack and ESTAE-type Recovery Routlnes
Dumping the Contents of the Linkage Stack . e .

Chapter 3. Synchronous Cross Memory Communication
When Should You Use Synchronous Cross Memory Communrcatlon’)
Terminology, Macros, and Assembler Instructions .
Cross Memory Terminology . . .
Macros Used for Synchronous Cross Memory Communlcat|on .
Instructions Used for Cross Memory Communication.
An Overview of Cross Memory Communication.
PC Routines .
Summary of Cross Memory Communlcatlon
The Cross Memory Environment .

© Copyright IBM Corp. 1988, 2002

.oXi

Xiii

. Xiii
. Xiii
. Xiv
. Xiv
. Xiv

. XV

XVil

. 1-1
. 1-3

. 14
. 14
. 15
. 1-5

. 1-6
.17
.. 19
. 1-11

. 2-1

. 2-2
. 2-3
. 2-3
. 2-4

. 2-5
. 25
. 2-7
. 2-7

2-8

. 2-8

iv

Entry Tables
Linkage Tables.
The PC Number.
Program Authorization - PKM (PSW Key Mask)
Address Space Authorization . .
Considerations Before Using Cross Memory
Environmental Considerations
Restrictions
Requirements
Establishing Cross Memory Communrcatron
Making a PC Routine Available to All Address Spaces
Making a PC Routine Available to Selected Address Spaces
Examples of How to Establish a Cross Memory Environment .
Example 1 - Making Services Available to Selected Address Spaces
Example 2 - Making Services Available to All Address Spaces.
Example 3 - Providing Non-Space Switch Services .
PC Linkages and PC Routine Characteristics .
PC Linkage Capabilities .
Defining a PC Routine
PC Routine Requirements .
Linkage Conventions .
Resource Management .
Reusing ASIDs .
Reusing LXs .
Reusing AXs and EAXs .
PC Routine Loading Recommendatlons .
Accounting Considerations .
Recovery Considerations

Chapter 4. Using the 64-bit Address Space
What is the 64-bit Address Space? .
Why Would You Use Virtual Storage above the Bar?
Limiting the Use of Memory Objects
Memory Objects .
Using Assembler Instructlons in the 64 blt Address Space
64-bit Binary Operations .
64-bit Addressing Mode (AMODE)
IARV64 Services .
Protecting Storage above the Bar .
Relationship Between the Memory Object and Its Owner
Creating Memory Objects .
Using a Memory Object .
Fixing the Pages of a Memory Object
Example of Fixing Pages of a Memory Object
Discarding Data in a Memory Object .
Releasing the Physical Resources that Back Pages of Memory Objects
Freeing a Memory Object .
Example of Freeing a Memory Object
Creating a Guard Area and Changing its Size.
Example of Creating a Memory Object with a Guard Area
Listing Information About the Use of Virtual Storage Above the Bar .
An Example of Creating, Using, and Freeing a Memory Object

Chapter 5. Using Access Registers
Using Access Registers for Data Reference .
A Comparison of Data Reference in Primary and AR Mode

z/0OS V1R3.0 MVS Extended Addressability Guide

. 39

. 39
. 3-10
. 3-10
.31
. 3-13
. 3-13
. 3-14
. 3-14
. 3-14
. 3-15
. 3-16
. 3-18
. 3-19
. 3-26
. 3-28
. 3-28
. 3-29
. 3-29
. 3-32
. 3-32
. 3-37
. 3-38
. 3-40
. 3-40
. 3-40
. 341
. 341

. 4-1
. 4-2

. 4-5
. 4-5

. . 4-8
. 4-11
. 4-12
. 4-12
. 4-13
. 4-14
. 4-16
. 4-17
. 4-17

4-18

. 4-18
. 4-19
. 4-19
. 4-20
. 4-20
. 4-21

. 51
. 5-1

Coding Instructions in AR Mode
Manipulating the Contents of ARs.
Access Lists .
Types of Access Llsts .
Types of Access List Entries .
Special ALET Values .
Special ALET Values at a Space Swrtch
Loading the Value of Zero into an AR .
The ALESERV Macro. .
Setting Up Addressability to an Address/Data Space
Adding an Entry to an Access List . .
Example of Adding an Access List Entry for a Data Space .
Example of Adding an Access List Entry for an Address Space
Obtaining and Passing ALETs and STOKENS .
Examples of Establishing Addressability to Data Spaces
Adding an Entry for the Primary Address Space to the DU-AL .
Using the ALET for the Home Address Space. .
Deleting an Entry from an Access List.
Example of Deleting a Data Space Entry from an Access Lrst
Example of Deleting an Address Space Entry from an Access List .
ALET Reuse by the System
EAX-Authority to an Address Space
Setting the EAX Value
Procedures for Establishing Addressablllty to an Address Space
Changing an EAX Value.
Freeing an EAX Value
Checking the Authority of Callers
Obtaining Storage Outside the Primary Address Space
What Access Lists Can an Asynchronous Exit Routine Use?
Issuing MVS Macros in AR Mode
Passing Parameters to MVS Macros in AR Mode
Formatting and Displaying AR Information .

Chapter 6. Creating and Using Data Spaces
Referencing Data in a Data Space
Relationship Between the Data Space and |ts Owner

SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces

Rules for Creating, Deleting, and Using Data Spaces
Example of the Rules for Accessing Data Spaces . .
Summary of Rules for Creating, Deleting, and Using Data Spaces
Creating a Data Space.
Choosing the Name of the Data Space
Specifying the Size of the Data Space .
Identifying the Origin of the Data Space .
Example of Creating a Data Space .
Protecting Data Space Storage .
Creating a Data Space of DREF Storage
Establishing Addressability to a Data Space .
Example of Establishing Addressability to a Data Space
Managing Data Space Storage .
Managing Data Space Storage Across a Checkpornt/Restart Operatron
Limiting Data Space Use
Serializing Use of Data Space Storage .
Examples of Moving Data into and out of a Data Space . .
Using Callable Cell Pool Services to Manage Data Space Areas
Extending the Current Size of a Data Space

. 55
. 5-6
. 57
. .57
. 5-11
. 5-12
. 5-13
. 5-13
. 5-14
. 5-15
. 5-15
. 5-16
. 5-17
. 5-18
. 5-19
. 5-22
. 5-23
. 5-24
. 5-24
. 5-25
. 5-25
. 5-25
. 5-28
. 5-30
. 531
. 5-31
. 5-31
. 5-33
. 5-35
. 5-35
. 5-37
. 5-37

. 6-1
. 6-2
. 6-2

6-3

. 6-3
. 6-4
. 6-6
. 6-8
. 6-9
. .69
. 6-11
. 6-11
. 6-12
. 6-13
. 6-13
. 6-14
. 6-14
. 6-14
. 6-15
. 6-15
. 6-15
. 6-17
. 6-19

Contents V

Deleting a Data Space6-20

Example of Creating, Using, and DeIetmg a Data Space621
Creating and Using SCOPE=COMMON Data Spaces. 622
Attaching a Subtask and Sharing Data Spaces with It.6-24
Sharing Data Spaces among Problem State Programs with PSW
Key 8 - F.8625
Mapping a Data-in- V|rtual Object to a Data Space e6-26
Paging Data Space Storage Areas into and out of Central Storage6-28
Releasing Data Space Storage629
How SRBs Use Data Spaces. . . N ¢ £Y24°
Obtaining the TCB Identifier for a Task (TTOKEN)6-32
Example of an SRB Routine Using a Data Space 6-32
Dumping Storage in a Data Space6-35
Using Data Spaces Efficiently.635
Chapter 7. Creating and Using Hiperspaces71
Managing Hiperspace Storage72
Limiting Hiperspace Use L. T2
Managing Hiperspace Storage Across a Checkpomt/Restart Operat|on .. T2
Relationship Between the Hiperspace and Its Owner. 7-3
Serializing Use of Hiperspace Storage . . . Y £
Standard and Expanded Storage Only H|perspaces Y)
Standard Hiperspaces . . . Y)
Expanded Storage Only H|perspaces Y 55
Summary of the Differences. . . . Y 5]
Rules for Creating, Deleting, and Using H|perspaces Y £4)
Creating a Hiperspace. . . . Y £ 74
Choosing the Name of the H|perspace Y
Specifying the Size of the Hiperspace79
Protecting Hiperspace Storage . . Y A K¢
Identifying the Origin of the Hlperspace .o Y
Creating a Non-Shared or Shared Standard H|perspace Y e
Creating an Expanded Storage Only Hiperspace. 7-12
Accessing Hiperspaces 712
How Problem State Programs W|th PSW Key 8 F Use Hlperspaces 7-13
How Supervisor State or PSW Key 0 - 7 Programs Use Hiperspaces 7-16
Obtaining an ALET for a Hiperspace 7-18
Transferring Data To and From Hiperspaces T-20
Read and Write Operations for Standard Hlperspaces .o .. 721
Read and Write Operations For Expanded Storage Only Hlperspaces 7-24
Obtaining Improved Data Transfer To and From a Hiperspace. 7-25
Extending the Current Size of a Hiperspace 737
Deleting a Hiperspace . 738
Releasing Hiperspace Storage . . eT-38
Using Data-in-Virtual with Standard H|perspaces e e e s L T-39
Mapping a Data-in-Virtual Object to a Hiperspace 741
Using a Hiperspace as a Data-in-Virtual Object 742
How SRBs Use Hiperspaces7-44
Chapter 8. Creating Address Spaces . . . T - o
Using the ASCRE Macro to Create an Address Space e - o
Planning the Characteristics of the Address Space83
Identifying a Procedure in SYS1.PROCLIB83
The Address Space Initialization Routine84
Writing an Initialization Routine.85
Establishing Cross Memory Linkages86

Vi z/OS V1R3.0 MVS Extended Addressability Guide

Passing a Parameter List to the New Address Space .
Providing an Address Space Termination Routine
Establishing Attributes for Address Spaces .
Deleting an Address Space .
Example of Creating and Deleting an Address Space .

Chapter 9. Creating and Using Subspaces

What Is a Subspace? .

Deciding Whether Your Program Should Run ina Subspace
Benefits of Subspaces .
Limitations of Subspaces .
System Storage Requirements .

Steps to Manage Subspaces .

Updating the Application Server To Use Subspaces .
Managing Subspaces when Performance Is a Priority
Managing Subspaces when Storage Is a Priority .
Creating a Single Subspace.
Determining Whether Subspaces Are Avallable on Your System
Obtaining Storage for Subspaces .

Making a Range of Storage Eligible to Be As3|gned to a Subspace .

Creating the Subspaces. .

Establishing Addressability to a Subspace .

Assigning Storage to the Subspaces .

Branching to a Subspace

Running a Program in a Subspace .
Disassociating Storage from the Subspaces

Removing the Subspace Entry from the DU-AL .
Deleting the Subspace

Making Storage Ineligible to Be Assrgned to a Subspace
Releasing Storage . . . o

Example of Managing Subspaces .

Planning for Recovery in a Subspace Envwonment
Planning for SPIE and ESPIE Routines . .
Planning for ESTAE-Type Recovery Routines and FRRS.

Diagnosing Errors in a Subspace Environment
Diagnosing 0C4 ABENDs . .
Using IPCS to Diagnose Program Errors ina Subspace .
RSM Component Trace .

Requesting a Dump

Appendix. Accessibility

Using assistive technologies

Keyboard navigation of the user mterface
Notices .
Programming Interface Informat|on .
Trademarks.

Glossary

Index .

. 8-10
. 8-10
. 811
. 8-12
. 8-12

. 9-1
. 9-1
. 94

. 95
. 95
. 9-6
. 97
. 97
. 9-8
. 9-8

. 9-10
. 9-12
. 9-13
. 9-14
. 9-15
. 9-16
. 9-17
. 9-18
. 9-18
. 9-18
. 9-19
. 9-20
. 9-21
. 9-22
. 9-22
. 9-23
. 9-23
. 9-24
. 9-24
. 9-24

Contents

AL
A1
A1
. B-1
. B-2
. C-1

. X1

Vii

Vil z/0S V1R3.0 MVS Extended Addressability Guide

Figures

1-1.
1-2.
2-1.
2-2.
2-3.
2-4,
2-5.
2-6.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
3-11.
3-12.
3-13.
3-14.
3-15.

4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.

6-10.

Accessing Data in a Data Space

Accessing Data in a Hiperspace.

Example of the BAKR Instruction

Example of Using the Linkage Stack .

Example of an EREG Instruction

Format of the Information Fields.

Example of an ESTA Instruction .

Example of an MSTA Instruction.

PC Routine Invocation

Accessing Data Through the MVCP and MVCS Instructlons
PC Instruction Execution Environment . .

PT and SSAR Instruction Execution Envwonment

Required Macros to Make PC Routines Available to All Users

Required Macros to Make PC Routines Available to Selected Address Spaces .

Declared Storage for Cross Memory Examples .

Using ETDEF to Statically Define Entry Table Descnptors
Using ETDEF to Dynamically Define Entry Table Descriptors.
Linkage Table and Entry Table Connection S
Calling Sequence for a Stacking PC Routine.

Calling Sequence for a Basic PC Routine.

Linkage and Entry Tables for a Global Service . .o
Comparing Basic and Stacking PC Linkage Conventions .
Cross Memory Connections between Address Spaces .
z/OS R2 Address Space .

How the System Chooses which MEMLIMIT Applles
Example of an AR/GPR . .

Using an ALET to Identify an Address/Data Space .

The MVC Instruction in Primary Mode

The MVC Instruction in AR Mode

Comparison of Addressability through a PASN AL and a DU AL

PASN-ALs and DU-ALs at a Space Switch
Special ALET Values .

Example 1: Adding an Entry to a DU AL .o
Example 1: Sharing a Data Space through DU-ALs .
Example 2: Adding an Entry to a PASN-AL .
Example 2: Sharing a Data Space through the PASN AL .

Example 3: Sharing Data Spaces Between Two Address Spaces .

Obtaining the ALET for the Primary Address Space .

Using the ALET for the Home Address Space

Difference Between Public and Private Entries .

Comparison of an AX and an EAX

Checking the Validity of an ALET . .

Example of Rules for Accessing Data Spaces

Example of Specifying the Size of a Data Space

Protecting Storage in a Data Space .

Example of Using Callable Cell Pool Serwces for Data Spaces
Example of Extending the Current Size of a Data Space
Example of Using a SCOPE=COMMON Data Space.

Two Programs Sharing a SCOPE=SINGLE Data Space .
Example of Mapping a Data-in-Virtual Object to a Data Space .

Scheduling an SRB with an Empty DU-AL and in a Non-Cross Memory Envwonment
Scheduling an SRB with a Copy of the Scheduling Program’s DU-AL and in the Same Cross

Memory Environment

© Copyright IBM Corp. 1988, 2002

. 1-8
. 1-9

. 2-4
. 25
. 2-6
. 2-6
. 2-7
. 37
. . 3-8
. 3-12
. 3-13
. 3-15
. 3-17
. 3-19
. 321
. 3-22
. 3-24
. 3-25
. 3-25
. 3-28
. 3-37
. 3-39
. 4-2
. 4-4

. 5-3
. 54
. .55
. 5-10
. 5-11
. 5-12
. 5-19
. 5-20
. 5-21
. 5-21
. 5-22
. 5-23
. 5-24
. 5-27
. 5-29
. 5-32

. 6-11
. 6-13
. 6-19
. 6-20
. 6-23
. 6-25
. 6-27

6-30

. 6-31

7-2.
7-3.

7-5.
7-6.

7-8.
7-9.

7-10.
7-11.
7-12.
7-13.
7-14.

8-1.

8-3.
8-4.
9-1.
9-2.
9-3.
9-4.

Example of Scrolling through a Standard Hiperspace .

Example of Specifying the Size of a Hiperspace

Protecting Storage in a Hiperspace .

A Problem State Program Using a Non- shared Standard Hlperspace
Example 1: An Unauthorized Program Using a Standard Hiperspace .
Example 2: An Unauthorized Program Using a Standard Hiperspace .

A Supervisor State Program Using a Non-Shared Standard Hiperspace.

A Supervisor State Program Using a Shared Standard Hiperspace
lllustration of the HSPSERV Write and Read Operations .
Example of Creating a Standard Hiperspace and Transferring Data .
Gaining Fast Data Transfer To and From Expanded Storage .
Example of Extending the Current Size of a Hiperspace

Example of Mapping a Data-in-Virtual Object to a Hiperspace

A Standard Hiperspace as a Data-in-Virtual Object

Synchronization of the Address Space Creation Process.

An Example of a Cross Memory Environment .

An Example of Cross Memory Environment Set by the ASCRE Macro.

The Cross Memory Linkages Set by the ASCRE Macro.
lllustration of Address Space that Owns One Subspace .
lllustration of Address Space that Owns Two Subspaces.
lllustration of the Range List . .
lllustration of GPR Contents in Event of Range Llst Error .

X z/OS V1R3.0 MVS Extended Addressability Guide

. 7-10
. 7-11
. 7-14
. 7-15
. 7-16
. 7-17
. 7-18
. 7-21
. 7-23
. 7-26
. 7-38
. 7-41
. 7-43
. 8-6
. 87
. . 88
. 8-10
. 9-2
. .93
. 9-11
. 9-12

Tables

1-1.
1-2.
4-1.
4-2.
5-1.
5-2.
5-3.
6-1.
6-2.
6-3.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
8-1.
8-2.
9-1.
9-2.
9-3.

Data Requirements for VIO, Data Spaces, and Hiperspaces .

Difficulty of Modifying an Existing Application .
IARV64 Services and Rules for What Programs Do W|th Memory Objects .
Comparing Tasks and Concepts: Below the Bar and Above the Bar .

Base and Index Register Addressing in AR Mode

Functions of the ALESERV Macro

Relationship Between the CHKEAX and ACCESS Parameters on ALESERV
Creating, Deleting, and Using Data Spaces

Requirements for Authorized Programs using the DIV Serwces Wlth Data Spaces
Addressability for Each Type of Invocation of the SCHEDULE Macro.
Comparison of Standard and ESO Hiperspaces .

Creating, Deleting, and Using Hiperspaces.

What Hiperspaces can Problem State Programs Wlth PSW 8 F Access'>
What Hiperspaces can Supervisor State or PSW Key 0 - 7 Programs Use? .
Rules for Adding Access List Entries for Hiperspaces

Uses of Hiperspaces and Data-in-Virtual . .

Requirements for Authorized Programs using the DIV Serwces Wlth Hlperspaces
Planning Considerations for the New Address Space .

ATTR Options for Address Spaces .

System Storage Requirements When Managlng Subspaces

Steps for Creating, Using, and Deleting Subspaces.

Storage Attributes Required for Subspaces.

© Copyright IBM Corp. 1988, 2002

. 1-11
. 1-12
. 4-11
. 4-15
. .55
. 5-14
. 5-26
. 6-7

6-27

. 6-31

. . 716
. 7-16
. 7-16
. 7-19
. 7-39

7-40

. . 83
. 8-11
. 95

. 95

. 99

Xi

Xil z/OS V1R3.0 MVS Extended Addressability Guide

About This Book

This book is intended for the programmer who writes programs with needs that
extend beyond the boundaries of the address space in which the programs are
dispatched. Specifically, the programs need to do one or more of the following:

* Execute in a multi-address space environment, interacting with programs running
in other address spaces

* Use data in address spaces other than the primary
» Use data in data spaces and hiperspaces
» Create another address space.

Who Should Use This Book

This book is intended for programmers who write programs that interact with MVS
or with subsystems. The programs must be in supervisor state, or PSW key 0 - 7,
or reside in APF-authorized libraries, except where otherwise noted. The book
assumes that the reader understands system concepts and writes programs in
assembler language.

Assembler language programming is described in the following books:

+ |HLASM [anguage Referencd

Using this book also requires you to be familiar with the operating system and the
services that programs running under it can invoke.

How This Book Is Organized

This book is organized as follows:

+ Chapter 1_“An Introduction to Extended Addressahilityl describes the concepts

behind a multiple-address environment in which the functions described in the
book would be appropriate. It describes the reasons why a programmer might
want to extend the addressability of a program beyond the boundaries of a
program’s primary address space. It also compares two kinds of data-only
spaces: data spaces and hiperspaces.

+ Chapter 2_“l inkage Stack’l describes an area that the system provides a

program to save status information at a branch or a program call instruction. This
chapter describes the linkage stack and the assembler instructions that cause the
system to add and remove an entry and use the entry.

 [Chapter 3, “Synchronous Cross Memory Communication! describes cross

memory functions.

 [Chapter 4 _“Using the 64-bit Address Space’] describes how a program can use

the address space virtual storage above the 2-gigabyte address. The chapter
describes the rules for creating, freeing, and using those virtual storage areas.

+ [Chapter 5, “Using Access Registers’] describes how a program can use the

registers known as “access registers” to access data in address spaces and data
spaces.

 [Chapter 6 _“Creating and lUsing Data Spaces! describes how a program can ask

the system for an area of virtual storage known as a “data space”. The chapter
describes the rules for creating, deleting, and using data spaces.

© Copyright IBM Corp. 1988, 2002 Xiii

 [Chapter 7, “Creating and Using Hiperspaces'| describes how a program can ask

the system for an area of virtual storage known as a “hiperspace”. The chapter
describes the rules for creating, deleting, and using hiperspaces.

+ [Chapter 8, “Creating Address Spaces] describes how a program can use the

ASCRE macro to create an address space.

* IChapter 9_“Creating and Using Subspaces! describes how a program can use

subspaces to prevent multiple application programs running in a single address
space from overwriting each other.

How to Use This Book

This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see

Where to Find More Information

Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all

products that are part of z/OS, see /QS Infarmation Roadmag.

The following table lists titles and order numbers for books related to other
products:

Short Title Used in This Book Tjtle Order Number

Principles of Operation z/Architecture Principles of Operation SA22-7832

Accessing licensed books on the Web

Xiv

z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:

T)

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:

|11'1"n- //www _ibm com/servers/resourcelinl

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.
Click on User Profiles located on the left-hand navigation bar.

Click on Access Profile.

Click on Request Access to Licensed books.

Supply your key code where requested and click on the Submit button.

a s~ DN

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

z/0OS V1R3.0 MVS Extended Addressability Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

Log on to Resource Link using your Resource Link userid and password.
Click on Library .

Click on zSeries.

Click on Software .

Click on z/OS.

Access the licensed book by selecting the appropriate element.

o g s wh P

Using LookAt to look up message explanations

LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:

|’1++p~//www ihm_com/servers/eserver/zseries/zas/bkserv/lookat/lookat htmll

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/0OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host

system. You can obtain the LookAt code for TSO from a disk on your z/0S

Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the

LookAt Web site, do the following:

1. Go to http://www ibm com/servers/eserver/zseries/zas/bkserv/lookat/lookat html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,

IEC192I has routing and descriptor codes listed in QS MVS Routing and

Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About This Book XV

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

XVi z/OS VIR3.0 MVS Extended Addressability Guide

Summary of changes

Summary of changes
for SA22-7614-02
z/OS Version 1 Release 3

This book contains information previously presented in 2/0S MVS Programming!
Extended Addressability Guidd, SA22-7614-01, which supports z/OS Version 1

Release 2.

New information
* An appendix with z/OS product accessibility information has been added.

This book includes terminology, maintenance, and editiorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7614-01
z/OS Version 1 Release 2

This book contains information previously presented in QS MVS Programmingl
Extended Addressabhility Guidd, SA22-7614-00, which supports z/OS Version 1

Release 1.

New information

This book includes terminology, maintenance, and editiorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7614-00
z/OS Version 1 Release 1

This book contains information also presented in OS/390 MVS Programming:
Extended Addressability Guide.

© Copyright IBM Corp. 1988, 2002 XVii

XVili z/0S V1R3.0 MVS Extended Addressability Guide

Chapter 1. An Introduction to Extended Addressability

Over the years, MVS has changed in many ways. Two key areas of growth and
change are addressability and integrity. The concept of an address space is an
integral part of both. An address space, literally defined as the range of addresses
available to a computer program, is like a programmer’s map of the virtual storage
available for code and data. An address space provides each programmer with
access to all of the addresses available through the computer architecture.

Because it maps all of the available addresses, an address space includes system
code and data as well as user code and data. Thus, not all of the mapped
addresses are available for user code and data. This limit on user applications was
a major reason for System/370 Extended Architecture (370-XA) and MVS/XA.
Because the effective length of an address field expanded from 24 bits to 31 bits,
the size of an address space expanded from 16 megabytes to 2 gigabytes. An
MVS/XA address space is 128 times as big as an MVS/370 address space.

A 2-gigabyte address space, however, does not, in and of itself, meet all of
programmers’ needs in an environment where processor speed continues to
increase, where applications must support hundreds of users with instant response
time requirements, and where businesses depend on quick access to huge
amounts of information stored on DASD.

With z/OS, the MVS address space expands to a size so vast that we need new
terms to describe it. Each address space, called a 64-bit address space, is 16
exabytes in size; an exabyte is slightly more than one billion gigabytes. The new
address space has logically 2° addresses. It is 8 billion times the size of the former
2-gigabyte address space that logically has 23 addresses. The number is 16 with
18 zeros after it: 16,000,000,000,000,000,000 bytes, or 16 exabytes. If you are
coding a new program that needs to store large amounts of data, a 64-bit address

sgace might work for you. See Chapter 4_“Using the 64-hit Address Space” arl

If, however you need more than a large address space, other extended
addressability techniques meet that need. Extended addressability allows
programmers to extend the power of applications through the use of additional
address spaces or data-only spaces. The data-only spaces that are available for
your programs are called data spaces and hiperspaces. These spaces are similar in
that both are areas of virtual storage that your program can ask the system to
create. Their size can be up to 2 gigabytes, as your program requests. Unlike an
address space, a data space or hiperspace contains only user data; it does not
contain system control blocks or common areas. Program code cannot run in a data
space or a hiperspace.

The following diagram shows, at an overview level, the difference between an
address space and a data space or hiperspace.

© Copyright IBM Corp. 1988, 2002 1-1

1-2

Data Space
or
Address Space Hiperspace

User Programs

and data T

4 kilobytes
2 gigabytes User data or
2 gigabytes
System programs l
and data
User Programs
and data

Both the architecture and the system protect the integrity of code and data within an
address space. Various techniques, like storage protect key and supervisor state
requirements, provide protection that is almost like a wall around an address space,
and this wall is basically a good thing from the point of view of the work going on
inside that individual address space.

The programming techniques that provide extended addressability permit programs
to break through but still preserve the wall that protects the address space.

Whether your application is one that can use extended addressability depends on
many factors. One basic factor is the amount of central, expanded, and auxiliary
storage available at your installation to back up virtual storage. Extended
addressability frequently requires additional amounts of virtual storage, which
means that your installation must have sufficient central and auxiliary storage, and
some of the techniques work most efficiently only when expanded storage is
available.

The goals for the design of a particular application are equally important in the
decision-making process. These goals might include:

» Performance. For an application with large numbers of online end users,
achieving the best possible response time is always a significant design goal.

- Efficient use of system resources, such as storage, and efficient use of the DASD
resources.

» Ability to randomly access very large amounts of data.

» Data integrity and isolation. Data in an address space is generally available to all
tasks (or TCBs) running in that address space; access to data in a data space or
hiperspace can be restricted. Code running in an address space can
inadvertently overlay data; because of its isolation, data in a data space or
hiperspace is less likely to be overlaid.

* Independence from individual device characteristics, from record-oriented
processing, and from data management concerns in general. Extended
addressability can allow an application to focus on controlling data as information
in contrast to controlling data as records in data sets stored on DASD volumes.

* Reduction in the size and complexity of the programming effort required to
develop a new application.

Achieving these goals depends to a very great extent on choosing a way to extend
addressability that meets your needs. You need to understand, at a very high level,

z/0OS V1R3.0 MVS Extended Addressability Guide

basic concepts related to each technique and how you might apply extended
addressability to specific programming situations.

At the detailed technical level, extended addressability can mean learning new
programming techniques, or new ways of applying existing techniques. At a higher
level, extended addressability can open completely different solutions to
programming problems. With extended addressability, virtual storage, backed by
expanded storage, can become, conceptually, a high-performance medium for
application data. It is also important to note that you should think of extended
addressability techniques as ones you can use to modify existing applications as
well as code new ones.

To use an example of how extended addressability can open up new solutions,
assume you need to write an application to sort 5000 records.

If you can hold only 50 records in storage, you must use DASD for intermediate
workfile processing.

If you can hold 500 records in storage, the solution is still the same, though it
requires fewer 1/O operations.

If you can hold all 5000 records in storage, the original solution still works, but it
is now possible to devise a completely different solution, one, for example, that
does not depend on a DASD workfile. This new solution could both improve
performance and reduce the effort required for program development.

This simple example illustrates how extended addressability can both improve the
performance of existing solutions and open the possibility of new solutions. The
large amounts of virtual and processor storage now available to an application can
allow totally new solutions and simplify the entire process of application
development.

Basic Concepts

No single technique for extended addressability meets all possible needs. Choosing
the right one for a particular application requires you to understand the advantages
and disadvantages of the technique and some of the key differences between them.
Many applications require a combination of various techniques. Before you decide
to incorporate one or more of the techniques in the design of a new application, or
decide to use a technique to modify an existing application, consult the detailed
technical description of each technique.

Asynchronous Cross Memory Communication

Asynchronous cross memory communication is a fancy way to describe scheduling
an SRB. An SRB is a service request block that a task can schedule to request that
some service take place in the same address space or another address space. Any
data that the requesting task and the service share must be placed in common
storage.

SRBs are one way to overlap processing. A task schedules an SRB to perform a
service, then continues with its work. When the service completes, it informs the
task. The timing, however, is asynchronous; the point when the SRB completes
cannot be predicted.

Chapter 1. An Introduction to Extended Addressability ~1-3

Technical Description
See “Asynchronous Inter-Address Space Communication” in

: <L . . 0

Synchronous Cross Memory Communication

Synchronous cross memory communication, called cross memory, is both more
complex and more flexible than scheduling an SRB. Cross memory requires the
programmer to use MVS macros to establish a cross memory environment. This
environment clearly defines the authorization requirements that protect the integrity
of the address spaces involved. Once this environment is established, the
application can use assembler instructions to transfer control from one address
space to another.

Cross memory applications (as well as applications running in a single address
space) can use the processor-managed linkage stack to simplify program linkages.
In a cross memory environment, the program call (PC) instruction that transfers
control to another routine can be either a basic PC or a stacking PC. If it is a
stacking PC, the system saves status on the linkage stack before it passes control
to the PC routine. When the PC routine returns control, the system automatically
restores status from the linkage stack.

The key fact to remember, however, is that cross memory provides synchronous
communication or processing across address spaces. When a task issues a PC
instruction, control passes to the PC routine. When the PC routine completes, it
returns control to the calling routine. Cross memory, for example, allows an
application running in one address space to provide services for many users in
other address spaces.

Technical Description

See Chapter 2_“Linkage Stack” on page 2-1 and IChapter 3_“Synchranous
Cross Memaory Communication” on page 3-1. Chapter 8 _“Creating Address
Bpaces” an page 8-1 contains related information.

Access Register ASC Mode

1-4

In access register address space control (ASC) mode, a program can use the full
set of assembler instructions (except MVCP and MVCS) to manipulate data in
another address space or in a data space. Unlike cross memory, access registers
allow full access to data in many address spaces or data spaces.

ASC mode determines how the processor resolves address references for the
executing program. In primary ASC mode, the processor uses the contents of
general purpose registers to resolve an address to a specific location. In access
register ASC mode, an access register (AR) identifies the space the processor is to
use to resolve an address. The processor uses the contents of an AR as well as
the contents of general purpose registers to resolve an address to a specific
location.

In AR ASC mode, a program can move, compare, or perform operations on data in
other address spaces or in data spaces. It is important to understand, however, that
ARs do not enable a program to transfer control from one address space to

z/0OS V1R3.0 MVS Extended Addressability Guide

another. That is, you cannot use ARs to transfer control from a program in one
address space to a program in another address space. For that, you need cross
memory.

You can, however, use ARs without using cross memory. If your application needs
to manipulate data in other address/data spaces but does not need to transfer
control to other address spaces, use ARs. If your application needs to transfer
control to routines in other address spaces but does not need to manipulate data,
use cross memory. If your application needs both the transfer of control and the
manipulation of data, use both cross memory and ARs.

See Chapter 5_“Using Access Registers” on page 5-1.

’* Technical Description

Data-in-Virtual

Data-in-virtual enables you to map data into virtual storage but deal only with the
portion of it that you need. The DIV macro provides the system services that
manage the data object. It enables you to map the object into virtual storage, create
a window, and “view” through that window only the portion of the data object that
you need. The system brings into central storage only the data that you actually
reference.

You can map a data-in-virtual object in either an address space, a data space, or a
hiperspace. Mapping the object into a data space or hiperspace provides additional
storage for the data; the size of the window is no longer restricted to the space
available in an address space. It also provides additional isolation and integrity for
the data, as well as more direct methods of sharing access to that data.

Data-in-virtual is most useful for applications, such as graphics, that require large
amounts of data but normally reference only small portions of that data at any given
time. It requires that the source of the object be a VSAM linear data set on DASD
(a permanent object) or a hiperspace (a temporary object).

Data-in-virtual is also useful for applications that require small amounts of data;
data-in-virtual simplifies the way you access data by avoiding the complexities of
access methods.

See “Data-in-Virtual” in 2208 MVS Programming- Assembler Services Guidd

’* Technical Description

Virtual Lookaside Facility

The virtual lookaside facility (VLF) is a set of MVS services that provide a
high-performance alternate path method of retrieving named objects from DASD on
behalf of many users. VLF is designed primarily to improve the response time for
such applications.

VLF uses data spaces to hold data objects in virtual storage as an alternative to
repeatedly retrieving the data from DASD. If you have an existing data retrieval
application or are considering designing one, determine whether VLF can meet your
needs.

Chapter 1. An Introduction to Extended Addressability ~ 1-5

Technical Description

See “Virtual Lookaside Facility (VLF)” in [zZ0S MVS Programming: Authorized
I : 7E

Data Spaces and Hiperspaces

Data spaces and hiperspaces are data-only spaces that can hold up to 2 gigabytes
of data. They provide integrity and isolation for the data they contain in much the
same way as address spaces provide integrity and isolation for the code and data
they contain. They are an extremely flexible solution to problems related to
accessing large amounts of data. There are two basic ways to place data in a data
space or a hiperspace. One way is through buffers in the program’s address space.
Another way avoids using address space virtual storage as an intermediate buffer
area: through data-in-virtual services, a program can move data into a data space
or hiperspace directly. For hiperspaces, this second way reduces the amount of I/O.

Programs that use data spaces run in AR ASC mode. They use MVS macros to
create, control, and delete data spaces. Assembler instructions executing in the
address space directly manipulate data that resides in data spaces.

Programs that use hiperspaces run in primary or AR ASC mode. They use MVS
macros to create, control, and delete hiperspaces. Programs cannot directly
manipulate data in a hiperspace, but use MVS macros to transfer data to and from
the hiperspace for data manipulation. Hiperspaces provide high-speed access to
large amounts of data.

Technical Description
To decide whether to use a data space or a hiperspace, see ['Basic Decision]

Data_Space ar Hiperspace'l. More detailed mformatlon appears in m

W and

Basic Decision:

Data Space or Hiperspace

For storing data, MVS offers a program a choice of two kinds of virtual storage
areas outside the program’s address space: data spaces and hiperspaces. You
must make these decisions:

» Does my program need virtual storage outside the address space?

* Which kind of virtual storage is appropriate for my program?

Data spaces and hiperspaces are similar in that both are areas of virtual storage
that the program can ask the system to create. They differ in the way your program
accesses data in the two areas. This difference, and others, are described in later
chapters. But before you can understand the differences, you need to understand
what your program can do with these virtual storage areas.

Under certain conditions, virtual mput/output (VIO) can be a better option than a
data space or a h|perspace

compares data spaces, hiperspaces, and VIO, and
presents some trade- offs.

1-6 z/0S V1R3.0 MVS Extended Addressability Guide

What Can a Program Do With a Data Space or a Hiperspace?
Programs can use data spaces and hiperspaces to:
* Obtain more virtual storage than a single address space gives a user.
* Isolate data from other tasks in the address space.

Data in an address space is accessible to all programs executing in that address
space. You might want to move some data to a data space or hiperspace for
security or integrity reasons. You can restrict access to data in those spaces to
one or several units of work.

» Share data among programs that are executing in the same address space or
different address spaces.

Instead of keeping the shared data in common areas, create a data space or
hiperspace for the data you want your programs to share. Use this space as a
way to separate your data logically by its own particular use.

* Provide an area in which to map a data-in-virtual object.

You can place all types of data in a data space or hiperspace, rather than in an
address space or on DASD. Examples of such data include:

* Tables, arrays, or matrixes

» Data base buffers

» Temporary work files

» Copies of permanent data sets

Because data spaces and hiperspaces do not include system areas, the cost of
creating and deleting them is less than that of an address space.

To help you decide whether you need this additional storage area, some important
questions are answered in the following sections. These same topics are addressed
in greater detail in the appropriate chapter later in the book.

How Does a Program Obtain a Data Space or a Hiperspace? Data spaces and
hiperspaces are created through the same system service: the DSPSERV macro.
On this macro, you request either a data space or a hiperspace. You also specify
some characteristics for the space, such as:

* lts size

* Its name

* Its storage key

* Its fetch protection attributes

The macro service allocates contiguous virtual storage of the size (up to two
gigabytes) you specify.

Who Owns a Data Space or Hiperspace? Although programs create data spaces
and hiperspaces, they do not own them. When a program creates a data space or
hiperspace, the system assigns ownership to the TCB that represents the program
or to the TCB that your program chooses as the owner.

When a TCB terminates, the system deletes any data spaces or hiperspaces that
the TCB still owns. If you want the space to exist after the creating TCB terminates,
assign the space to a TCB that will continue to be active beyond the termination of
the creating TCB.

Chapter 1. An Introduction to Extended Addressability ~ 1-7

Can Problem State Programs Use Data Spaces and Hiperspaces? Problem

state programs can create and use both data spaces and hiperspaces. Some types
of data spaces and hiperspaces require that a program be supervisor state or have
PSW key 0-7.

What are the Differences?

1-8

By now, you should know whether your program needs the kind of virtual storage
that a data space or hiperspace offers. Only by understanding the differences
between the two types of spaces, can you decide which one most appropriately
meets your program’s needs, or whether the program can use them both.

The main difference between data spaces and hiperspaces is the way a program
references data. A program references data in a data space directly , in much the
same way it references data in an address space. It addresses the data by the
byte, manipulating, comparing, and performing arithmetic operations. The program
uses the same instructions (such as load, compare, add, and move character) that
it would use to access data in its own address space. To reference the data in a
data space, the program must be in the ASC mode called access register (AR)
mode. Pointers that associate the data space with the program must be in place
and the contents of ARs that the instructions use must identify the specific data
space.

M shows a program in AR mode using a data space. The CLC instruction

compares data at two locations in the data space; the MVC instruction moves the
data at location D in the data space to location C in the address space.

Address Space Data Space

CLC and MVC access data
while data is in data space.

Figure 1-1. Accessing Data in a Data Space

In contrast, a program does not directly access data in a hiperspace. MVS
provides a system service, the HSPSERV macro, to transfer the data between an
address space and a hiperspace in 4K byte blocks. The HSPSERV macro read
operation transfers the blocks of data from a hiperspace into an address space
buffer where the program can manipulate the data. The HSPSERV write operation
transfers the data from the address space buffer area to a hiperspace for storage.
You can think of hiperspace storage as a high-speed buffer area where your
program can store 4K byte blocks of data.

Eigure 1-2 on page 1-9 shows a program in an address space using the data in a

hiperspace. The program uses the HSPSERV macro to transfer an area in the

z/0OS V1R3.0 MVS Extended Addressability Guide

hiperspace to the address space. While the data is in the address space, the
program compares the values at locations A and B, and uses the MVC instruction to
move data at location D to location C. After it finishes using the data in those
blocks, the program transfers the area back to the hiperspace. The program could
be in either primary or AR ASC mode.

Address Space Hiperspace

Program
| []
<

HSPSERV...

CLCAB
MVC C,D

HSPSERV...

A

°L]
L]
‘L]

CLC and MVC access data
only after data has been
transferred from hiperspace
to address space.

Figure 1-2. Accessing Data in a Hiperspace

With one HSPSERYV invocation, the program can transfer data in more than one
area between the hiperspace and the address space.

Comparing Data Space and Hiperspace Use of Physical Storage

To compare the performance of manipulating data in data spaces with the
manipulating of data in hiperspaces, you should understand how the system “backs”
these two virtual storage areas. (That is, what kind of physical storage the system
uses to maintain the data in virtual storage.) The system uses the same resources
to back data space virtual storage as it uses to back address space virtual storage:
a combination of central storage and expanded storage (if available) frames, and
auxiliary storage slots. The system can move low-use pages of data space storage
to auxiliary storage and bring them in again when your program references those
pages. The paging activity for a data space includes 1/0O between auxiliary storage
paging devices and central storage.

The system backs hiperspace virtual storage with expanded storage only, or with a
combination of expanded and auxiliary storage, depending on your choice. When
you create a hiperspace, the system gives you storage that will not be the target of
assembler instructions and will not need the backing of real storage frames.
Therefore, when the system moves data from hiperspace to address space, it can
make the best use of the available resources.

Which One Should Your Program Use?

If your program needs to manipulate or access data often by the byte, data spaces
might be the answer. Use a data space if you frequently address data at a byte
level, such as you would in a workfile.

Chapter 1. An Introduction to Extended Addressability ~ 1-9

If your program can easily handle the data in 4K byte blocks, a hiperspace might
give you the best performance. Use a hiperspace if you need a place to store data,
but not to manipulate data. A hiperspace has other advantages:

* The program can stay in primary mode and ignore the ARs.

* The program can benefit from the high-speed access.

* The system can use the unused central storage for other needs.

An Example of Using a Data Space

Suppose an existing program updates several rate tables that reside on DASD.
Updates are random throughout the tables. The tables are too large and too many
for your program to keep in contiguous storage in its address space. When the
program updates a table, it reads that part of the table into a buffer area in the
address space, updates the table, and writes the changes back to DASD. Each
time it makes an update, it issues instructions that cause 1/O operations.

Assume you want to change this application to improve its performance. If the
tables were to reside in data spaces, one table to each data space, the tables
would then be accessible to the program through assembler instructions. The
program could move the tables to the data spaces (through buffers in the address
space) once at the beginning of the update operations and then move them back
(through buffers in the address space) at the end of the update operations.

If the tables are VSAM linear data sets, data-in-virtual can map the tables and
move the data into the data space where a program can access the data.
Data-in-virtual can then move the data from the data space to DASD. With
data-in-virtual, the program does not have to use address space buffers as an
intermediate buffer area for transferring data to and from DASD.

Technical Description

See Chapter 6 _“Creating and Using Data Spaces’] for more information about

data spaces.

An Example of Using a Hiperspace
Suppose existing programs running in the same address spaces use a data base

that resides on DASD. The data base contains many records, each one containing
personnel information about one employee. Access to the data base is random and
programs reference but do not update the records. Each time a program wants to
reference a record, it reads the record in from DASD.

This kind of application can benefit from a hiperspace. If the data base were to exist
in a hiperspace, a program would still bring one record into its address spaces at a
time. Instead of reading from DASD, however, the program would bring in the
records from the hiperspace on expanded storage (or auxiliary storage, when
expanded storage is not available). In effect, this technique can eliminate many 1/0
operations and reduce execution time.

Technical Description

See Chapter 7_“Creating and Using Hiperspaces! for more information about

hiperspaces.

1-10 z/0S V1R3.0 MVS Extended Addressability Guide

Choosing VIO Instead of a Data Space or a Hiperspace

Virtual input/output (VIO), like data spaces and hiperspaces, is designed to reduce
the need for the processor to transfer data between DASD and central storage. In
this way, all three speed up the execution of your programs. Additionally, they all
use expanded storage, where possible, to back the data. This section compares
VIO with data spaces and hiperspaces and suggests the circumstances under
which you would choose VIO.

In making the decision on which to chose, you need to consider the following
questions:

* How is the data in your program organized?
* How does the program use the data?

* How much programming effort is required to change an existing program to take
advantage of VIO, data spaces, or hiperspaces?

Two tables in this section help you understand facts related to these questions.
answers questions about the data the program uses.

Table 1-1. Data Requirements for VIO, Data Spaces, and Hiperspaces

Question VIO Data spaces Hiperspaces
Is the data in your program | VIO supports only Data spaces support Hiperspaces support
temporary? temporary data. temporary data and temporary data and
permanent data (through permanent data through
DIV). DIV or data window
services. (For information
on using data window
services, see
amming.:
)
Is the data in your program |VIO (through EXCP) Data spaces have no Hiperspaces have no
sequential? supports both sequential requirement. requirement.
and random access;
however, random access
requires more processor
cycles.
Is data arranged (or able to | VIO has no requirement. Data spaces have no Hiperspaces require that
be organized) in 4K byte requirement. the data be accessed and
blocks? referenced in 4K byte
increments, located on a 4K
byte boundary.

You might have an existing program — either an assembler program or a
high-level-language (HLL) program — that you would like to change to use the

performance benefits of VIO, data spaces, or hiperspaces. [able 1-2 on page 1-12)
compares the programming effort required to make this change.

Chapter 1. An Introduction to Extended Addressability ~1-11

Table 1-2. Difficulty of Modifying an Existing Application

Question

VIO

Data spaces

Hiperspaces

How difficult is it to modify
existing programs that use
1/0 operations?

VIO requires no
modification to existing
programs that use an
access method that uses
EXCP. Either use storage
management subsystem
(SMS) to make global
requests to use VIO or use
JCL for an individual
program.

Assembler programs must
change to use system
macros and access
registers. Through VLF,
authorized programs can
use data spaces to store
and retrieve named objects.
HLL programs cannot use
data spaces directly.

Assembler programs must
change to use system
macros or data window
services. HLL programs
cannot use hiperspaces
directly. They can use
hiperspaces through data
window services.

What is the performance comparison?

Data spaces and hiperspaces do not have

the overhead of an access method and the device simulation of VIO; therefore, they
require less processor time than VIO.

When would you choose VIO over data spaces or hiperspaces?

Use VIO when

you want to improve the performance of an existing program, but you do not want
to make large changes. For information about how to use VIO, see
Users Guidd

1-12

z/0OS V1R3.0 MVS Extended Addressability Guide

Chapter 2. Linkage Stack

The linkage stack is an area of protected storage that the system gives a program
to save status information at a branch or a program call. This chapter describes the
linkage stack and the assembler instructions that cause the system to add and
remove an entry and modify the entry.

Saving status is a required part of program linkage. Status includes general
purpose registers (GPRs), access registers (ARs), the PSW, and other important
information. The first thing a program does when it receives control is save the
status of its caller. The last thing the program does before it returns control is
restore the caller’s status. The calling program can then resume processing with its
status (including registers and cross memory environment) intact. For example, your
PC routines might have used the PCLINK STACK macro to save a caller’'s status
and then the PCLINK UNSTACK macro to restore the status.

An easier way to save and restore status, however, is to allow the system to do it

for you through the linkage stack. The linkage stack saves you and the system work
in the following ways:

* The “chain” of status save areas is located in one place rather than chained
throughout storage. Diagnostic information thus appears in sequence on the
linkage stack. (For the contents of an entry in the stack, see lContents af thd

. - w)

* The linkage stack provides a place for reentrant programs to save the caller's
complete status before the reentrant programs dynamically obtain their working
storage. Once a program has saved the caller’s status on its linkage stack, it has
all 16 GPRs and ARs available to establish its working environment.

* Your programs do not have to obtain and chain 72-byte save areas, provided all
called programs are using the linkage stack.

The following illustration shows how a program uses the linkage stack. The call
from Program 1 to Program 2 automatically places all the caller’s status on the
linkage stack. The return from Program 2 to Program 1 automatically restores all
the caller's status and removes the entry from the linkage stack.

Linkage Stack Program 1 Program 2

Current linkage o
stack entry }‘_ - _(L(i?gg(_)__ I

Q
=
-
@
o
e
5
S

|

The system provides each workunit (that is, TCB or SRB) with its own linkage
stack. The linkage stack is then available to all programs that the workunit

© Copyright IBM Corp. 1988, 2002 2-1

represents. The programs can run in primary or AR address space control (ASC)
mode. They can be problem state or supervisor state, locked or unlocked, enabled
or disabled.

The linkage stack actually consists of two stacks: the normal linkage stack and the
recovery linkage stack. The normal linkage stack consists of at least 96 entries for
use by programs that run under the workunit. (Note that under some circumstances,
the system might provide more than 96 entries, but you will always have at least
96.) When the system needs an entry and finds that all entries in the normal stack
are used, it abends the program with a “stack full” interruption code. After the “stack
full” interruption occurs, the system uses the recovery linkage stack. The recovery
linkage stack is available to the program’s recovery routines after the “stack full”
interruption occurs. If you anticipate a need for more than 96 entries, you can use
the LSEXPAND macro to expand the size of the normal and recovery stacks for
tasks. For mformatlon about how and When to issue the LSEXPAND macro, see

q ”

Linkage Stack Considerations for Asynchronous Exit Routines

A user may request an asynchronous exit routine to execute on behalf of a task.
When an asynchronous exit routine gets control, it cannot access the last entry (if
any) on the linkage stack, because that entry was created by the interrupted
routine. The extract stacked registers (EREG) instruction, extract stacked state
(ESTA) instruction, and the modify stacked state (MSTA) instruction will cause a
linkage stack exception to occur.

Any routines to which the exit routine passes control are also subject to the same
restriction. However, the exit routine, or any routines to which it passes control, can
manipulate linkage stack entries that they themselves add.

Instructions that Add and Remove a Linkage Stack Entry

2-2

The three instructions that cause the system to add or remove entries on the
linkage stack are:

» The stacking program call (PC), which adds an entry when it passes control to
another routine.

* The branch and stack (BAKR), which adds an entry whether it branches to
another routine or not.

* The program return (PR), which removes an entry when it returns from a call or
branch made with either a stacking PC or a BAKR.

This chapter introduces each instruction and gives simple examples of each. It is
not intended to direct you in your coding. For complete descriptions of the
instructions, see Principles of Operation.

The stacking PC instruction adds an entry to the linkage stack. m
ESynchronous Cross Memary Communication describes the two types of PC
linkages. The stacking PC uses the linkage stack to save the user’'s environment.
The basic PC, on the other hand, requires that the PC routine provide code to save
the user’s environment. The stacking and basic PC instructions are cross memory
instructions; they are described in more detail in ERC_Linkages” on page 3-§.
Chapter 3_“Synchronous Cross Memary Communication’ also contains a
comparison of the coding of a stacking PC and a basic PC. The linkage stack
instructions BAKR and PR are described in the following sections.

z/0OS V1R3.0 MVS Extended Addressability Guide

Branch and Stack (BAKR) Instruction

The branch and stack (BAKR) instruction performs the branch and link in the same
way that the BALR does; additionally, it adds an entry to the linkage stack. The
entry includes the branch address of the calling routine.

A program can use the BAKR to branch to a subroutine in its address space and
add an entry to the linkage stack, or it can use a BAKR simply to branch to the next
instruction in the program and add an entry to the linkage stack. A program return
(PR) instruction returns control to the program and removes an entry from the
linkage stack.

The BAKR instruction does not change the current addressing mode, nor does it
cause a branch out of an address space. You can be in either primary or AR ASC
mode to use BAKR.

Program Return (PR) Instruction

The PR instruction performs several actions on the current entry in the linkage
stack — the current entry being the entry formed by the most recent BAKR or
stacking PC instruction:

» If the current entry was added by a stacking PC or a BAKR instruction, the PR
instruction returns control to the calling program.

* The PR instruction restores the contents of the current entry, including the cross
memory environment, the PSW, and the contents of registers 2 - 14.

* The PR instruction removes the current linkage stack entry.
The PR instruction can execute in either primary or AR mode.

The following example shows the PR instruction and a use of the BAKR instruction.

CALLING PROGRAM SUBROUTINE

L 15,=A(SUBR) .
BALR 14,15 SUBR EQU =
. BAKR 14,0

PR

Figure 2-1. Example of the BAKR Instruction

In the example, the BALR branches to subroutine SUBR. When SUBR receives
control, it uses BAKR to save the caller’s status on the linkage stack. The BAKR
saves the contents of register 14, which the calling program loaded with the
address of the instruction after the BALR, on the linkage stack. Zero, as the second
operand, means that the status information is saved and no branch occurs. The PR
instruction in SUBR restores the caller’s status, restores the contents of register 14,
removes the current linkage stack entry, and returns to the instruction after the
BALR in the calling program.

Chapter 2. Linkage Stack 2-3

This use of the BAKR instruction is consistent with the MVS convention in which the
called program saves the status of the caller. This convention is described in the

chapter on linkage conventions in zZ0S MVS Programming: Assembler Serviced
Guidé.

Example of Using the Linkage Stack

m shows how the stacking PC and the BAKR instructions add entries to
TCBA's linkage stack and how the PR instruction removes those entries.

The program call from Program 1 to Program 2 automatically places all the caller’s
status on the linkage stack (adding Entry 1 to the linkage stack). Program 2 uses
the BALR instruction to branch to a subroutine, which uses the BAKR instruction to
save Program 2’s status (adding Entry 2 to the stack). When the subroutine returns
to Program 2 through the PR instruction, Program 2’s status is restored (removing
Entry 2 from the stack). When Program 2 uses the PR instruction to return to
Program 1, Program 1’s status is restored (removing Entry 1 from the stack). At any
time, the entry formed by the most recent BAKR or stacking PC instruction contains
the status of the caller of the currently executing code.

TCBA

e Program 1

AN

p (Add E Subroutine
/ Linkage Stack %

Program 2 BAKR (Add Entry 2)
Entry 1 E / E
BALR (Remove Entry2) =—
= PR
Entry 2 =

Figure 2-2. Example of Using the Linkage Stack

Contents of the Linkage Stack Entry

A linkage stack entry includes the following information:

* Contents of GPRs 0 - 15

* Contents of ARs 0 - 15

* Primary and secondary address space numbers (PASN and SASN)
« EAX

* Entire current PSW

* PSW key mask (PKM)

* PC number (if a stacking PC caused the entry) or a branch address (if a BAKR
caused the entry)

* An eight-byte area that you can change with the modify stacked state (MSTA)
instruction

2-4 2/0S V1R3.0 MVS Extended Addressability Guide

On return from a routine, the PR instruction restores the entry and returns control to
the calling program.

Instructions that Manipulate the Contents of a Linkage Stack Entry

A program cannot change the order of the entries on the linkage stack, nor can it
change any part of an entry, except for the eight-byte modifiable area of the current
entry. Three instructions copy information from the current entry or copy information
to the modifiable area of the current entry:

* The extract stacked registers (EREG) instruction loads ARs and GPRs from the
current linkage stack entry.

* The extract stacked state (ESTA) instruction obtains non-register information from
the current linkage stack entry.

* The modify stacked state (MSTA) instruction copies the contents of an even/odd
GPR pair to the modifiable area of the current linkage stack entry.

These instructions can execute in both primary and AR ASC mode.

Extract Stacked Registers (EREG) Instruction

Use the extract stacked registers (EREG) instruction to load ARs and GPRs from
the current linkage stack entry. A typical use of EREG is in the middle of a
subroutine after the caller’s input registers have been modified for other purposes.
Use EREG to restore the contents of the AR/GPR pairs.

In the following example, EREG extracts the contents of the calling program’s ARs
0-1 and GPRs 0-1 from the current entry and loads them into ARs 0-1 and GPRs
0-1. The entry in this example was caused by the BAKR instruction.

CALLING PROGRAM SUBROUTINE
. SUBR EQU =
L 15,=A(SUBR) BAKR 14,0
BALR 14,15 .
I:ZREG 0,1
PR

Figure 2-3. Example of an EREG Instruction

The EREG instruction does not change the current stack pointer.

Another example of using EREG to extract the contents of an AR/GPR pair appears

inL -

Extract Stacked State (ESTA) Instruction

A linkage stack entry includes the contents of the ARs and the GPRs, as well as
other information. The EREG instruction copies the ARs and GPRs from the current
entry; the ESTA instruction copies the rest of the information (that is, the
non-register information) from the current entry. The non-register information is
divided into four eight-byte information fields and is identified to the ESTA
instruction by a code.

Chapter 2. Linkage Stack 2-5

2-6

Eigure 2-4 shows the code for each of the four information fields and the format of
the fields. The format of the third field varies depending on whether a BAKR or a
stacking PC instruction caused the entry.

Code Format of Information Fields

0 PKM SASN EAX PASN

0 2 4 6 7
1 PSW

0 7

Reserved A Branch Address

0 4 7

2 or
Reserved PC Number

0 7
3 Modifiable Area

0 7

Figure 2-4. Format of the Information Fields

The ESTA instruction copies one of the fields in the current entry into an even/odd
pair of GPRs. It returns a condition code that tells whether the entry on the linkage
stack was formed by the BAKR (CC=0) or stacking PC (CC=1) instruction.

In the following example, the load address instruction (LA) loads a code of “1” into
register 9, where “1” identifies the information field that contains the PSW. The
ESTA instruction then copies this field into general registers 4 and 5. The BZ
instruction causes a branch if the stack entry was formed by a BAKR.

* Program entered through a stacking PC or BAKR
* Code of 1 identifies the PSW in the linkage stack entry

LA 9,1 Load the code of 1 into general register 9

ESTA 4,9 Load the PSW into general registers 4 and 5

BZ BAKRTYPE If CC=0, then BAKR formed the stack entry
If CC=1, then stacking PC formed the entry

Figure 2-5. Example of an ESTA Instruction

Another example of the ESTA instruction appears in Eigure 5-17 on page 5-34.

z/0OS V1R3.0 MVS Extended Addressability Guide

Modify Stacked State (MSTA) Instruction

The MSTA instruction moves the contents of an even/odd pair of GPRs into the
modifiable area of the current linkage stack entry. You might use the ESTA
instruction later to load the contents of the modifiable area into registers.

In the following example, general registers 6 and 7 contain 8 bytes to be placed into
the modifiable area of the current linkage stack entry. The MSTA instruction copies
the 8 bytes to the modifiable area. The load address (LA) instruction loads a code
of 3 into GPR 1. (The code for the modifiable area is “3”.) Later in the example, the
ESTA instruction copies the contents of the modifiable area into general register 2.

* Program entered through a stacking PC or BAKR

* General registers 6 and 7 contain 8 bytes to be placed
* into modifiable area of the current Tinkage stack entry
* Code of 3 identifies the modifiable area in entry

MSTA 6 Update modifiable area
LA 1,3 Load code of 3 into general register 1
ESTA 2,1 Load modifiable area into general registers 2 and 3

Figure 2-6. Example of an MSTA Instruction

For an example of using MSTA to pass data to an associated recovery routine

(ARR), see the section on providing recovery in the |ZZO.S_M.\£S_ELagza.m.mLug}
wedAssembleLseﬂw 1 1 .

Expanding a Linkage Stack to a Specified Size

The system provides a way for programs running in task mode to expand the size
of the normal and recovery linkage stacks. The default size for a normal linkage
stack is at least 96 entries. A linkage stack of this size is probably sufficient for your
program’s needs. However, if you have a program, such as one with recursive
code, that needs more than 96 entries, you can use the LSEXPAND macro to
request a normal linkage stack of up to 16,000 entries.

When a program uses up all of the entries in the normal linkage stack, the system
abends the workunit and sets up a recovery linkage stack. The default for this
linkage stack is 24 entries. The LSEXPAND macro can increase the recovery
linkage stack to 4000 entries.

The timing of the execution of the LSEXPAND macro is important. You must
anticipate using up the entries in the stack. If the program has already issued a
“stack full” program interruption, the system will not accept the LSEXPAND macro
and will abend the workunit. In other words, don’t wait until the normal linkage stack
is full to issue this macro.

Example of Requesting Larger Normal and Recovery Linkage Stacks

To request that the linkage stack have 2000 entries and the recovery linkage stack
have 150 entries, code the following LSEXPAND macro:

LSEXPAND NORMAL=2000,RECOVERY=150

Chapter 2. Linkage Stack ~2-7

Relationship Between the Linkage Stack and ESTAE-type Recovery

Routines

When a user provides an ESTAE-type recovery routine through the ESTAE or
ESTAEX macro, the system saves the current linkage stack position. The user must
deactivate the ESTAE-type recovery routine under the linkage stack ental that was
current when the ESTAE -type recovery routlne was activated.

describes how the macros that
provide recovery for your programs use the linkage stack.

Dumping the Contents of the Linkage Stack

In case of an error, you might want to check the status information that the system
saved when your program gained control. Through the interactive problem control
system (IPCS) FORMAT line command, you can display or prlnt dump data
associated with a specified address space.

contains an example of a dump of an entry in the linkage stack.

2-8 2z/0S V1R3.0 MVS Extended Addressability Guide

Chapter 3. Synchronous Cross Memory Communication

Synchronous cross memory communication enables one program to provide
services synchronously to other programs. This book calls the program that
provides the services, the service provider, and the programs that use the services,
users. The service provider can provide services to one user or to many.

Synchronous cross memory communication takes place between the user and the
service provider when the user issues a program call (PC) instruction. If the service
provider has previously established the necessary environment, the PC instruction
transfers control to a service provider program called a PC routine. The PC routine
provides the requested service and then returns control to the user.

The user program and the PC routine can execute in the same address space or in
different address spaces. In either case, the PC routine executes under the same
TCB as the user. Thus, the PC routine provides the service synchronously.

A PC routine can access (fetch or store) data in the user’s address space by using
access registers (ARs) and the full set of assembler instructions. If the PC routine
has the proper authority, it can also access data in other address spaces or in data
spaces. For information about using access registers, see Chapter 5_“lsing Accesd

Note: In releases prior to SP3.1.0, a PC routine could access data in the user’'s
address space only by issuing the MVCP or MVCS instructions. PC routines
can still use these instructions. IBM recommends the use of access
registers, however.

The rest of this chapter discusses when you should consider using synchronous
cross memory communication and explains the environment the service provider
must create and how to create it.

When Should You Use Synchronous Cross Memory Communication?

The use of synchronous cross memory communication to provide services to users
can provide virtual storage constraint relief as well as improve the integrity of the
service and its data. Consider using synchronous cross memory communication if
you wish to:

* |solate the service and its data from the user of the service

* Make the service available to multiple users without the need to store it in
commonly addressable storage

* Replace an existing service request block (SRB) routine to gain improved
performance or simplify communication

* Provide an authorized service to problem state programs

Synchronous cross memory communication enables you to provide services to
many users without making the service available in commonly addressable storage.
At the same time, you can isolate the service from the user, thus protecting it by
having the service in its own address space.

© Copyright IBM Corp. 1988,